CLASS: XII	INDIAN SCHOOL MUSCAT SECOND PERIODIC TEST	SUBJECT: MATHEMATICS
	SET - A	
Q. NO.	VALUE POINTS	SPLIT UP OF MARKS
1.	* Applying identities $1 - \cos x = 2\sin^2 x/2$ and $1 + \cos x = 2\cos^2 x/2$ correctly	1 mk
	* Simplifying $\tan^2 \frac{x}{2} = \sec^2 \frac{x}{2} - 1$	½ mk
	* Final answer: $2 \tan \frac{x}{2} - x + C$	½ mk
2.	* For applying completing the square method & reducing to the form $\int \frac{dx}{(x-3)^2 + 2^2}$	1 ½ mk
	* For getting the final answer : $\frac{1}{2} \tan^{-1} \left(\frac{x-3}{2} \right) + C$	½ mk
3.	* Applying identity $1 - \cos x = 2\sin^2 \frac{x}{2}$ in the denominator and $\sin x = 2\sin \frac{x}{2}\cos \frac{x}{2}$ in the numerator	(½ + ½)mk
	* Splitting the terms & simplifying to obtain $\int e^x (f(x) + f'(x)) dx$	½ mk
	* For the final answer : $-e^x \cot \frac{x}{2} + C$	½ mk
4.	* Applying property $\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$ correctly	1 mk
	* Adding both to get final answer : $\frac{\pi}{4}$	1 mk
5.	* Reducing to partial fractions form	1 mk
	* Finding values of A=1, B= -5, C=4	1 ½ mk
	* Simplification & getting final answer: $\log x-1 - 5\log(x-2) + 4\log x-3 + C$	1 ½ mk
6.	* Applying ' integration by parts' formula correctly	2 mk

	* Solving to get the final answer : $\frac{x^2}{2} \log x - \frac{x^2}{4} + C$	2 mk
7.	* Solving to get $3[1+(n-1)h]^2-5[1+(n-1)h]$	1 ½ mk
	* Applying identities $\sum (n-1)^2$ and $\sum (n-1)$ correctly	1 mk
	* Simplification & substituting $\mathit{nh}=2$	1 mk
	* Final answer : 6	½ mk